Power Up Friday- maths

Work out the digit hidden in each number using the description given.

6
A single digit that is a multiple of both 3 and 2 .

37 2

Rounds the number to 3,800 and is a multiple of 4 .

402
959
The digit is a prime number larger than 5.

When rounded to the nearest 1,000 , you get 5,000.

I am going to order my numbers on a number line.

Answers

Work out the digit hidden in each number using the description given.

6
A single digit that is a multiple of both 3 and 2 .
$37 \quad 2$
Rounds the number to 3,800 and is a multiple of 4.

402

959
The digit is a prime number larger than 5.

When rounded to the nearest 1,000 , you get 5,000.

I am going to order my numbers on a number line.

LO: To solve correspondence word problem If we bought two packets of balls,

 how many rugby balls would we have?

One packet of balls includes:
2 Footballs
3 Rugby Balls
What is this asking us to do?

How would we go about solving this?
How can we represent this using multiplication?

LO: To solve correspondence word problems

If we bought two packets of balls, how many rugby balls would we have?

You can see there are 3 rugby balls in one pack so if you multiply this by 2 you will get 6 rugby balls! $\mathbf{3 \times 2} \mathbf{~ = ~} \mathbf{6}$

Mrs Harrison bought some new balls. When all the balls were opened, there were 10 footballs. How many rugby balls were there?

Answer

15 rugby balls

LO: To solve correspondence word problems

To represent the total number of vertices using multiplication, we could write this.

$$
\underbrace{4 \times 4+3 \times 2}_{16+6=22}
$$

Vertices are the plural of a vertex. They are corners where the edges meet.

LO: To solve correspondence word problems

- Success Criteria:
- Read the question
- Check the relationship between the objects
- Decide what the multiplier is
- Complete the calculation
- Check your answer (use pictures if needed)

LO: To solve correspondence word problems

Fluency - work these out in your books.

1 Johnny says he can represent the total number of vertices of his shapes like this:

$$
4 \times 7+3 \times 3=37
$$

Find the total number of vertices for these sets of shapes in the same way

2) Use circles, squares and pentagons to represent the following total of vertices:
21 22 23
(3) Using the 6 and 4 times tables how many different ways can you make a total of 40 ? Represent this with manipulatives.

LO: To solve correspondence word problems

Fluency - Mark your Answers

1 Johnny says he can represent the total number of vertices of his shapes like this:

Find the total number of vertices for these sets of shapes in the same way

Circles don't have any vertices (corners)!

$$
4 \times 4+2 \times 5=26
$$

$$
5 \times 8+3 \times 0=40
$$

(2) Use circles, squares and pentagons to represent the following total of vertices:
21 ■■■

23 $22 \square \square \square \square$
$23 \square \square \square \square$
3 Using the 6 and 4 times tables how many different ways can you make a total of 40 ?

LO: To solve correspondence word problems Reasoning

Using the vertices of squares and triangles, how many ways can you balance the equation?

Problem Solving

Spiders have 8 legs and ants have 6 legs.

There are 288 legs in a vegetable patch.
How many spiders and ants could there be?

LO: To solve correspondence word problems

Mark your Answers

Reasoning

There are many possible combinations Problem Solving

Possible answers:
24 spiders
16 ants
9 spiders
36 ants

