





What is a fraction? What do they look like?

What is the top part called?

What is the bottom part called?



### **LO: To understand fractions**

#### Let's look at these together...



This flag has 2 equal parts altogether.

Each stripe is I part.

Each stripe is  $\frac{1}{2}$  of the flag.



This flag has 3 equal parts altogether.

Each stripe is I part.

Each stripe is  $\frac{1}{3}$  of the flag.

We call the fraction  $\frac{1}{3}$  one third.



### LO: To understand fractions

b) Each flag is split into equal parts.

The number of equal parts is different.



The number of equal parts is the denominator of the fraction.

The numerator of each fraction is I.

A fraction where the numerator is I is called a unit fraction.







### **LO: To understand fractions**



















#### Success Criteria:

- Understand a fraction is parts of a whole
- The denominator = number of groups/objects/shape is split into
- The numerator = number needed from that group
- A fraction where the numerator is a 1 is called a unit fraction



**LO: To understand fractions** 



### Fluency

Complete the sentences to describe the images.



\_\_\_ out of \_\_\_ equal parts are shaded.



of the shape is shaded.

Shade  $\frac{1}{5}$  of the circle.



Shade  $\frac{3}{5}$  of the circle







Circle  $\frac{1}{5}$  of the beanbags.



Circle  $\frac{3}{5}$  of the beanbags.



What's the same and what's different about  $\frac{1}{5}$  and  $\frac{3}{5}$ ?

Complete the sentences.

A unit fraction always has a numerator of \_\_\_\_\_
A non-unit fraction has a numerator that is \_\_\_\_\_ than \_\_\_\_
An example of a unit fraction is \_\_\_\_\_
An example of a non-unit fraction is \_\_\_\_

Can you draw a unit fraction and a non-unit fraction with the same denominator?



#### Reasoning

### True or False?



 $\frac{1}{3}$  of the shape is shaded.



### **LO: To understand fractions**

### Problem Solving

Sort the fractions into the table.

|                       | Fractions<br>equal to<br>one whole | Fractions<br>less than<br>one whole |
|-----------------------|------------------------------------|-------------------------------------|
| Unit<br>fractions     |                                    |                                     |
| Non-unit<br>fractions |                                    |                                     |

Are there any boxes in the table empty? Why?

| 3 | 3 | 1 | 1 | 2 |   | 2 | 1 |
|---|---|---|---|---|---|---|---|
| 4 | 5 | 3 | 4 | 2 | 4 | 5 | 2 |





#### **Answers**

Complete the sentences to describe the images.



 $\frac{1}{2}$  out of  $\frac{8}{2}$  equal parts are shaded.



of the shape is shaded.

Shade  $\frac{1}{5}$  of the circle.



Shade  $\frac{3}{5}$  of the circle







Circle  $\frac{1}{5}$  of the beanbags.



Circle  $\frac{3}{5}$  of the beanbags.



What's the same and what's different about  $\frac{1}{5}$  and  $\frac{3}{5}$ ?

Complete the sentences.

A unit fraction always has a numerator of \_\_\_\_1
A non-unit fraction has a numerator that is more\_\_ than \_\_1
An example of a unit fraction is \_\_1
An example of a non-unit fraction is 3\_\_2

Can you draw a unit fraction and a non-unit fraction with the same denominator?

### **LO: To understand fractions**



#### Reasoning

### True or False?



 $\frac{1}{3}$  of the shape is shaded.

False, one quarter is shaded. Ensure when counting the parts of the whole that children also count the shaded part.

### **LO: To understand fractions**



### Problem Solving

Sort the fractions into the table.

|                       | Fractions<br>equal to<br>one whole | Fractions<br>less than<br>one whole |
|-----------------------|------------------------------------|-------------------------------------|
| Unit<br>fractions     |                                    |                                     |
| Non-unit<br>fractions |                                    |                                     |

Are there any boxes in the table empty? Why?

| 3 4 | <u>3</u><br>5 | 1<br>3 | 1<br>4 | 2 2 | 4<br>4 | 2<br>5 | 1 2 |
|-----|---------------|--------|--------|-----|--------|--------|-----|
|-----|---------------|--------|--------|-----|--------|--------|-----|

Top left: Empty

Top right:  $\frac{1}{3}$ ,  $\frac{1}{4}$  and

1 2

Bottom left:  $\frac{2}{2}$  and

4

4

Bottom right:  $\frac{3}{4}$ ,  $\frac{3}{5}$ 

and  $\frac{2}{5}$ 

There are no unit fractions that are equal to one whole other than  $\frac{1}{1}$  but this isn't in our list.