Power Up

Complete the table.

\times	$\mathbf{9}$	12	3	6	10	7	$\mathbf{8}$	11
10				60	100		80	
100	900		300					1,100
1,000		12,000				7,000		

I wonder how I can use multiplying by 10 to help me multiply by 100 .

Let's look at the 11 and 12 X table!

$1 \times 11=$	$1 \times 12=$
$2 \times 11=$	$2 \times 12=$
$3 \times 11=$	$3 \times 12=$
$4 \times 11=$	$4 \times 12=$
$5 \times 11=$	$5 \times 12=$
$6 \times 11=$	$6 \times 12=$
$7 \times 11=$	$7 \times 12=$
$8 \times 11=$	$8 \times 12=$
$9 \times 11=$	$9 \times 12=$
$10 \times 11=$	$10 \times 12=$
$11 \times 11=$	$11 \times 12=$
$12 \times 11=$	$12 \times 12=$

Let's look at the 11 and 12 X table!

$$
\begin{aligned}
& 1 \times 11=11 \\
& 1 \times 12=12 \\
& 2 \times 11=22 \\
& 2 \times 12=24 \\
& 3 \times 11=33 \\
& 4 \times 11=44 \\
& 5 \times 11=55 \\
& 6 \times 11=66 \\
& 7 \times 11=77 \\
& 8 \times 11=88 \\
& \text { Which } \\
& \text { multiplication and } \\
& \text { division facts in the } \\
& 11 \text { and } 12 \text { times } \\
& \text { tables have not } \\
& \text { appeared before in } \\
& \text { other times-tables? } \\
& \begin{array}{l}
3 \times 12=36 \\
4 \times 12=48
\end{array} \\
& 5 \times 12=60 \\
& 6 \times 12=72 \\
& 7 \times 12=84 \\
& 8 \times 12=96 \\
& 9 \times 11=99 \\
& 10 \times 11=110 \\
& 11 \times 11=121 \\
& 12 \times 11=132 \\
& 9 \times 12=108 \\
& 10 \times 12=120 \\
& 11 \times 12=132 \\
& 12 \times 12=144
\end{aligned}
$$

Let's look at the 11 X table!

$1 \times 11=11$

$2 \times 11=22$
$3 \times 11=33$
$4 \times 11=44$
$5 \times 11=55$
$6 \times 11=66$
$7 \times 11=77$
$8 \times 11=88$
$9 \times 11=99$
$10 \times 11=110$
$11 \times 11=121$
$12 \times 11=132$

So what does commutative means? tables.
Which 2 X table is commutative to 2×11 ?
$11 \times 2=22$

Commutativity is when 2 numbers can be added or multiplied \& the same answer will be found no matter what order they are in.

You can use different equipment (base ten, multi-link cubes, place value coins, numicon, cuisinaire) to represent a multiplication calculation.

At home, you could use objects or draw counters to show a calculation.

For example
3×6

Your turn

In your book, draw the two arrays for 3×12 and 12×3

So, you can see that numbers which are moved around in different orders, but the result is the same answer. These are called commutative!

Using your X Table facts, write the commutative calculations for the following...

1. $3 \times 11=33$
2. $6 \times 11=66$
3. $12 \times 11=132$
4. $2 \times 12=24$
5. $5 \times 12=60$
6. $10 \times 12=120$

When I know 10×11 and 11×10 is equal to 110, I can use this to number fact to calculate 11×11. I add another 11. $11 \times 11=121$

What number does this represent?

$$
\begin{aligned}
& 1 \times 10=10
\end{aligned}
$$

What number does this represent? Write it in a number sentence...
(o) $1 \times 1=1$

So,

$$
\begin{aligned}
& 1 \times 10=10
\end{aligned}
$$

$$
\begin{aligned}
& 1 \times 1=1 \stackrel{\circ}{\ominus}
\end{aligned}
$$

Therefore,
$1 \times 10+1 \times 1=1 \times 11$

There are 11 people in the queue for the cinema. If each person bought 5 tickets each, how many tickets have been sold. How do we approach this problem? Find the key information... 11 people, 5 tickets So we need to multiply 11×5 What is my answer?

Fluency

\square Fill in the blanks.

$$
2 \times 10=
$$

$2 \times 1=$
2 lots of 10 doughnuts = \qquad 2 lots of 1 doughnut $=$ \qquad 2 lots of 11 doughnuts $=$ \qquad $2 \times 10+2 \times 1=2 \times 11=$ \qquad
1 Use objects around the house, or draw circles/squares to show

Complete the calculations.

$$
\begin{array}{llll}
12 \times 5=\square & 5 \times 12=\square & 48 \div 12=\square & 84 \div 12= \\
12 \times \square=120 & 12 \times \square=132 & \square \div 12=8 & \square=9 \times 12
\end{array}
$$

\square There are 11 players on a football team.
7 teams take part in a tournament.
How many players are there altogether in the tournament?

Fluency answers

\square Fill in the blanks.

$$
2 \times 10=
$$

$2 \times 1=$
2 lots of 10 doughnuts = \qquad 2 lots of 1 doughnut $=$ \qquad 2 lots of 11 doughnuts $=$ \qquad $2 \times 10+2 \times 1=2 \times 11=$ \qquad
1 Use objects around the house, or draw circles/squares to show

Complete the calculations.

$$
\begin{array}{llll}
12 \times 5=\square & 5 \times 12=\square & 48 \div 12=\square & 84 \div 12= \\
12 \times \square=120 & 12 \times \square=132 & \square \div 12=8 & \square=9 \times 12
\end{array}
$$

\square There are 11 players on a football team.
7 teams take part in a tournament.
How many players are there altogether in the tournament?

Reasoning

Here is one batch of muffins.

Teddy bakes 11 batches of muffins. How many muffins does he have altogether?

In each batch there are 3 strawberry, 3 vanilla, 4 chocolate and 2 toffee muffins. How many of each type of muffin does Teddy have in 11 batches?

Teddy sells 5 batches of muffins.
How many muffins does he have left?

Problem Solving

Rosie uses a bar model to represent 88 divided by 11

88										
11	11	11	11	11	11	11	11	11	11	11

Explain Rosie's mistake.
Can you draw a bar model to represent 88 divided by 11 correctly?

Answers - Reasoning
 Problem Solving

Teddy has 132 muffins altogether.

Strawberry: 33
Vanilla: 33
Chocolate: 44
Toffee: 22
$132-55=77$

Teddy has 77 muffins left.

> Rosie has divided
> by grouping in 11s
> but has found 11
> groups of 11 which
> is equal to 121

> To divide 88 by
> sharing into 11
> equal groups,
> there would be 8
> in each group.

> To divide 88 by
> grouping in 11s,
> there would be 8
> groups of 11

