# Thursday - maths

#### Power up



- a) There are 6 rows of seats in each section. Each row has 52 seats.
  How many seats are there in a section?
  - b) There are 3 sections in the stadium.
    How many seats are there in total?

## Power up answer

a) There are 6 rows of seats in each section.







I wonder if I could use this method to multiply a 3-digit number by a I-digit number.



$$6 \times 52 = 312$$

There are 312 seats in a section.

b) There are 3 sections in the stadium. Each section contains 312 seats.



$$312 \times 3 = 936$$

There are 936 seats in total.

We have looked at written methods for short multiplication by 2 digits x 1 digit, now we are going to look at multiplication with 3 digits x 1 digit.

#### STILL ...

Remember to put the digits in the correct place value columns

**Remember** to start to multiply the ones by the divisor first

Remember to carry if you need to

Remember to add in any numbers carried when you multiply the tens by the divisor

#### 145x3



Notice that here you need to carry twice!

#### 232x7



Notice that here you need to carry across into the thousand column!

## 347x9



Is this correct? Think... why/why not?



|   | 3 | 1 | 3 |
|---|---|---|---|
| × |   |   | 3 |
|   | 9 | 3 | 5 |

First step:  $3 \times 3 = 9$ 

NOT 5

- Line up digits carefully
- Multiply ones
- Multiply tens
- Show numbers carried
- Remember to add in numbers carried

| Fluency 1                          | Fluency 2                            |  |  |
|------------------------------------|--------------------------------------|--|--|
| 24x4                               | 142 x 4                              |  |  |
| 21x3                               | 225 x 5                              |  |  |
| 27x5                               | 143 x 3                              |  |  |
| 46x4                               | 658 x 8                              |  |  |
| 23x6                               | 715 x 6                              |  |  |
| 52x3                               | 553 x 4                              |  |  |
| Mark your own, if you get them all | Mark your work                       |  |  |
| right move onto Fluency 2.         | If you get them all right move on to |  |  |
| If you get more than 1 wrong speak | reasoning                            |  |  |
| to an adult for help then complete | If you get more than 1 wrong speak   |  |  |
| the questions below.               | to an adult for help then complete   |  |  |
|                                    | the questions below.                 |  |  |
| 43x3                               | 345 x 4                              |  |  |
| 17×7                               | 195 × 5                              |  |  |
| 61x6                               | 438 x 9                              |  |  |
| 28x4                               | 844 x 6                              |  |  |
| 91x8                               | 275 x 3                              |  |  |

Check Fluency
1 answers on
next slide!

#### Fluency 1

24x4=96

21x3=63

27x5=135

46x4=184

23x6=138

52x3=156

Now if you are mostly correct, carry on with your fluency, then move on to reasoning questions.

If your are unsure, then ask for some help and try a few more on your own.

#### Fluency 2

142x4=568

225x5=1125

143x3=429

658x8=5264

715x6=4290

553x4=2212

**Complete the reasoning question** 

Dexter is calculating  $208 \div 8$  using partwhole models.

Can you complete each model?



How many part-whole models can you make to calculate  $132 \div 4?$ 

#### LO: To use short multiplication Answers

#### **Rest of Fluency 1 and Fluency 2**

| 1 | 2 | <b>x</b> 3 | _1 | 17  | 0 |
|---|---|------------|----|-----|---|
| 4 |   | N          |    | L Z | J |

#### 345x4=1380

#### Reasoning

$$208 \div 8 = 26$$
  
 $80 \div 8 = 10$   
 $48 \div 8 = 6$   
 $160 \div 8 = 20$   
 $40 \div 8 = 5$   
 $8 \div 8 = 1$ 

Children can then make a range of part-whole models to calculate 132  $\div$ 4 e.g.  $100 \div 4 = 25$  $32 \div 4 = 8$